Efficacy of a new nasal steroid, S0597, for the treatment of ragweed induced allergic rhinitis; tested in an Environmental Exposure Unit (EEU).

Anne K. Ellis, MD MSc FRCPCI,2, Lisa M. Steacy, BSc2, Terry J Walker, BA2, Abhijeet Joshi B Pharm, MBA2, Shravanti Bhowmik MD3, and Atul Raut, MD, PhD3

1-Department of Medicine, Queen’s University, Kingston ON Canada, 2- Allergy Research Unit, Kingston General Hospital, Kingston, ON Canada 3- Sun Pharma Advanced Research Company Ltd., Mumbai, India

Background

Allergic rhinitis (AR) is a significant public health concern worldwide, affecting an estimated 500 million people. Intranasal glucocorticosteroids (INS) are regarded as the most effective pharmacologic treatment for AR and are recommended by the Allergic Rhinitis and its Impact on Asthma guidelines as a first-line therapy. INS have a good safety profile with a low risk of systemic side effects due to their local action on the nasopharyngeal mucosa. Intranasal corticosteroids such as mometasone furoate and fluticasone furoate, which all have systemic bioavailability of less than 1%,

S0597 is a novel glucocorticosteroid that has been formulated as an intranasal spray for the treatment of seasonal allergic rhinitis (SAR). This is the short form of its International Union of Pure and Applied Chemistry name SF150. Results of a phase 1, multiple ascending dose study indicated that intranasal S0597 was safe and well tolerated at doses up to 3200 µg once daily. No clinically significant suppression of the hypothalamic–pituitary–adrenal (HPA) axis was observed and the plasma concentration of S0597 was below the lower limit of quantification at most time points for all participants.

The aim of the present study was to assess the clinical efficacy, safety, and tolerability of 3 once-daily doses (50, 200, and 400 µg) of S0597 intranasal spray compared with placebo in participants with SAR who were exposed to ragweed pollen challenges in an environmental exposure unit (EEU).

Methods

Study Design: This was a phase 2, randomized, double-blind, placebo-controlled, single-center, 4-arm, parallel study conducted in the EEU at Kingston General Hospital, Kingston, Ontario, Canada, between October 2 and December 17, 2014. Adults with documented SAR during ragweed pollen season were randomized to one of four intranasal treatment arms: either S0597 at doses of 50, 200, or 400 µg/day, or placebo as a nasal spray to be administered once daily in the EEU.

The study was given ethical clearance by the Queen’s University Health Sciences and Affiliated Teaching Hospitals Research Ethics Board. The ClinicalTrials.gov identifier is NCT01940146.

Inclusion criteria: Adult participants (18–65 y) were required to have a minimum 2-year history of SAR due to ragweed pollen, a positive skin prick test to ragweed (defined as a wheal ≥3 mm larger than the negative control) within 12 months prior to enrollment, a total nasal symptom score (TNSS) of at least 6 at most visits during the 3 days leading up to 1-hour screening/priming challenge in the EEU and within the first 2 hours of the baseline visit, and forced expiratory volume in 1 minute (FEV1) of at least 80% of predicted during the screening.

Exclusion criteria: Symptomatic perennial AR; clinically significant nasal septum deformation or obstruction; respiratory tract infection within 2 weeks prior to screening; chronic pulmonary disease; asthma; pregnancy; breastfeeding; and participation in another clinical trial within 5 months prior to enrollment.

In the present study, all participants reported nasal symptoms of SAR after pollen challenge and all 3 doses of S0597 (50, 200, 400 µg/day) were well tolerated. A total of 222 participants were randomized into the study and received study medication. Thus, all were included in the population for safety analysis and the intent-to-treat population for the efficacy analysis. The mean (SD) age was 39 (10.4) years, 61.3% were female, and most were Caucasian (96.8%), followed by Asian (1.4%).

Results

Study medication was taken onsite following the completion of the EEU exposure on day 1 (baseline visit) and day 7. On days 2 to 6 and 8 to 13, participants self-administered the study medication at home, with participants providing evidence of nose drops being used. Study medication was taken at home during the evening on days 1 to 13. Study medication was taken prior to pollen exposure in the EEU and at 6 time points (30, 60, 90, 120, 150, and 180 minutes) during the challenge. Nasal assessments included TNSS, total ocular symptom score (TOS), total rhinoconjunctivitis symptom score (TRSS), and peak nasal inspiratory flow (PNIF) (See Figure 2). The severity of each component symptom was scored from 0 to 3 and the total scores were calculated by adding the scores for each symptom (Table 1). The average score over the 6 time points during challenge was the test result for each visit.

The primary efficacy end point was TNSS change from baseline to day 14. Secondary efficacy end points were TNSS change from baseline to day 7 and to day 14 in each of the TNSS subscales. Prespecified exploratory efficacy end points were TOSS, TRSS, PNIF, and peak expiratory flow rate (PEFR).

Statistical Analyses: Assuming a difference in the change from baseline in TNSS of 1 unit (standard deviation [SD] 1.7) between S0597 and placebo, a sample size of 200 evaluable participants was required to assure at least 80% power at a 2-sided α level of 5%, using a t test statistic for equal group sizes. Approximately 280 participants were to be screened to randomize 220 participants to the study.

The safety population consisted of all randomized participants receiving at least 1 dose of the study treatment. The primary and secondary efficacy analyses were conducted for the intent-to-treat population. Least-squares means change in TNSS, TNNS subscales, TOSS, TRSS, PNIF, and PEFR scores from baseline to day 14 were compared among groups using repeated-measures analysis of covariance, with treatment, visit, and treatment-by-visit interaction as fixed effects and baseline value as the covariate (treatment comparison at the 2-sided 0.05 significance level). Pairwise treatment comparisons of each dose of S0597 vs placebo were conducted using the t test. All statistical analyses were performed using SAS 9.3 or subsequent versions (SAS Institute, Cary, North Carolina).

Table 1: Demographics of the participants at screening (safety analysis set)

No dose–response relationship was observed among the 3 doses of S0597 tested. A significant suppression of the HPA axis was observed and the plasma concentration of S0597 was below the lower limit of quantification at most time points for all participants.

Discussion

This randomized, double-blind, parallel-group, single-center study assessed the dose-related efficacy and safety of 3 doses of S0597, a novel INS, in participants with SAR who were challenged with ragweed pollen in an EEU.

All participants reported nasal symptoms of SAR after pollen challenge and all 3 doses of S0597 (50, 200, 400 µg/day) showed a statistically significant reduction in nasal symptoms (TNSS) from baseline compared with placebo on day 14. The mean improvement in each of the constituent items of the TNSS (rhinorrhea, nasal congestion, sneezing, nasal itching) from baseline to day 14 was greater in each of the S0597 groups compared with placebo. There was no evidence that the efficacy response consistently increased with increased dose. The S0597 200 µg/day group demonstrated the most consistent response, with statistically significant improvements in all of the nasal symptoms compared with placebo on days 7 and 14. The difference from placebo for change in the rhinorrhea score was statistically significant with all 3 doses of S0597 on day 14. In addition to these symptom scores, there was a statistically significant improvement in measurements of PNIF (data not shown).

This study compared with placebo, and S0597 is a novel intranasal corticosteroid that warrants further development.

Conclusion

In conclusion, this study demonstrated that all 3 tested doses of S0597 were effective in relief of nasal symptoms of SAR compared with placebo, and S0597 is a novel intranasal corticosteroid that warrants further development.

Acknowledgements

This study was funded by Sun Pharma Advanced Research Company (Mumbai, India). The authors acknowledge Mr. Daniel Adams and Mr. Barnaby Holbrook for their contributions to the successful completion of this study.